Roll No.

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech.(AE) (Sem.-5th) NUMERICAL METHODS IN SIMULATION ENGINEERING Subject Code : AE-309

Paper ID : [A0717]

Time : 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

- l. Write briefly :
 - (a) What do you mean by Errors and Significant digits?
 - (b) Explain Relaxation Method.
 - (c) Define Stochastic and Random Variables.
 - (d) Write down Simulation languages.
 - (e) Explain SIMAN.
 - (f) Evaluate $\Delta \tan^{-1}ax$ and $\Delta^2 a^x$.
 - (g) Discuss quadrature formulae.

(h) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Trapezoidal rule.

- (i) Write down Runge-Kutta method of fourth order.
- (j) Find value of Pi.

SECTION-B

- 2. (a) Show that Newton's method has a quadratic convergence.
 - (b) Find the real root of the equation $x^3 4x 9 = 0$ by the method of false position.
- 3. (a) Evaluate $\sqrt{30}$ by iteration method correct to four decimal places.
 - (b) Write down differences between Newton's forward and Newton's backward difference formula.
- 4. Solve the given equation by Gauss-seidal method 20x + y 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25.
- 5. Using Newton's divided difference formula, find f(x) from the following data :

x	0	1	2	4	5	6
f(x)	1	14	15	5	6	19

6. Using Picard's method, find approximate values of y and z corresponding dy = dz = 2

to
$$x = 0.1$$
, given that $y(0) = 2$, $z(0) = 1$ and $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$.

SECTION-C

- 7. Using Runge-Kutta method, solve $y'' = xy^2 y^2$ for x = 0.2 correct to 4 decimal places. Initial conditions are x = 0, y = 1, y = 0.
- 8. (a) Discuss one application of Monte Carlo methods
 - (b) Discuss in brief about central tendency, dispersion and probability distribution functions.
- 9. (a) Find a formula for the probability distribution of the total number of heads obtained in four tosses of a balanced coin.
 - (b) Discuss Analog vs. Computer Simulation.

Download free old Question papers gndu, ptu hp board, punjab board